494
Entry URI http://metadb.riken.jp/db/SciNetS_ria224i/cria224u4ria224u17163881i
Entry name D'Auria John C et al. 2007 Jan. Plant J. 49(2):194-207.
Title Characterization of a BAHD acyltransferase responsible for producing the green leaf volatile (Z)-3-hexen-1-yl acetate in Arabidopsis thaliana.
Authors D'Auria John C|Gershenzon Jonathan|Hansel Armin|Pichersky Eran|Schaub Andrea
Abstract Green-leaf volatiles are commonly emitted from mechanically and herbivore-damaged plants. Derived from the lipoxygenase pathway, these compounds may serve as attractants to predators and parasitoids of herbivores, prevent the spread of bacteria and fungi, and induce several important plant defense pathways. In Arabidopsis thaliana, the major volatile released upon mechanical wounding of the leaves is the GLV ester, (Z)-3-hexen-1-yl acetate. We have characterized a member of the BAHD acyltransferase gene family At3g03480 which catalyzes the formation of (Z)-3-hexen-1-yl acetate from acetyl-CoA and (Z)-3-hexen-1-ol. The encoded acetyl CoA:(Z)-3-hexen-1-ol acetyltransferase (CHAT) has the ability to accept several medium-chain-length aliphatic and benzyl-derived alcohols, but has highest catalytic efficiency with (Z)-3-hexen-1-ol. The highest expression of CHAT occurs in the leaves and stems. Upon mechanical damage, the (Z)-3-hexen-1-yl acetate emission peaked after 5 min and declined to pre-damage levels after 90 min. However, CHAT gene transcript levels increased much more slowly with the highest levels detected between 3 and 6 h after wounding. An increase in CHAT enzyme activity in vitro followed the transcript increase, with levels peaking between 10 and 12 h after wounding. Plants expressing either an RNAi cassette for the CHAT gene or plants harboring a T-DNA insertion in the CHAT coding region had greatly reduced (Z)-3-hexen-1-yl acetate emission, showing that the CHAT enzyme is responsible for the in planta production of this ester.
Pubmed ID 17163881
Journal The Plant journal
Volume 49
Issue 2
Pages 194-207
Publication date 2007 Jan
Num of phenotype gene 0